Extensions 1→N→G→Q→1 with N=C18 and Q=C23

Direct product G=N×Q with N=C18 and Q=C23
dρLabelID
C23×C18144C2^3xC18144,113

Semidirect products G=N:Q with N=C18 and Q=C23
extensionφ:Q→Aut NdρLabelID
C18⋊C23 = C23×D9φ: C23/C22C2 ⊆ Aut C1872C18:C2^3144,112

Non-split extensions G=N.Q with N=C18 and Q=C23
extensionφ:Q→Aut NdρLabelID
C18.1C23 = C2×Dic18φ: C23/C22C2 ⊆ Aut C18144C18.1C2^3144,37
C18.2C23 = C2×C4×D9φ: C23/C22C2 ⊆ Aut C1872C18.2C2^3144,38
C18.3C23 = C2×D36φ: C23/C22C2 ⊆ Aut C1872C18.3C2^3144,39
C18.4C23 = D365C2φ: C23/C22C2 ⊆ Aut C18722C18.4C2^3144,40
C18.5C23 = D4×D9φ: C23/C22C2 ⊆ Aut C18364+C18.5C2^3144,41
C18.6C23 = D42D9φ: C23/C22C2 ⊆ Aut C18724-C18.6C2^3144,42
C18.7C23 = Q8×D9φ: C23/C22C2 ⊆ Aut C18724-C18.7C2^3144,43
C18.8C23 = Q83D9φ: C23/C22C2 ⊆ Aut C18724+C18.8C2^3144,44
C18.9C23 = C22×Dic9φ: C23/C22C2 ⊆ Aut C18144C18.9C2^3144,45
C18.10C23 = C2×C9⋊D4φ: C23/C22C2 ⊆ Aut C1872C18.10C2^3144,46
C18.11C23 = D4×C18central extension (φ=1)72C18.11C2^3144,48
C18.12C23 = Q8×C18central extension (φ=1)144C18.12C2^3144,49
C18.13C23 = C9×C4○D4central extension (φ=1)722C18.13C2^3144,50

׿
×
𝔽